On Key Recovery Attacks Against Existing Somewhat Homomorphic Encryption Schemes

نویسندگان

  • Massimo Chenal
  • Qiang Tang
چکیده

In his seminal paper at STOC 2009, Gentry left it as a future work to investigate (somewhat) homomorphic encryption schemes with IND-CCA1 security. At SAC 2011, Loftus et al. showed an IND-CCA1 attack against the somewhat homomorphic encryption scheme presented by Gentry and Halevi at Eurocrypt 2011. At ISPEC 2012, Zhang, Plantard and Susilo showed an IND-CCA1 attack against the somewhat homomorphic encryption scheme developed by van Dijk et al. at Eurocrypt 2010. In this paper, we continue this line of research and show that most existing somewhat homomorphic encryption schemes are not IND-CCA1 secure. In fact, we show that these schemes suffer from key recovery attacks (stronger than a typical IND-CCA1 attack), which allow an adversary to recover the private keys through a number of decryption oracle queries. The schemes, that we study in detail, include those by Brakerski and Vaikuntanathan at Crypto 2011 and FOCS 2011, and that by Gentry, Sahai and Waters at Crypto 2013. We also develop a key recovery attack that applies to the somewhat homomorphic encryption scheme by van Dijk et al., and our attack is more efficient and conceptually simpler than the one developed by Zhang et al.. Our key recovery attacks also apply to the scheme by Brakerski, Gentry and Vaikuntanathan at ITCS 2012, and we also describe a key recovery attack for the scheme developed by Brakerski at Crypto 2012.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Key Recovery Attacks Against NTRU-Based Somewhat Homomorphic Encryption Schemes

A key recovery attack allows an attacker to recover the private key of an underlying encryption scheme when given a number of decryption oracle accesses. Previous research has shown that most existing Somewhat Homomorphic Encryption (SHE) schemes suffer from this attack. In this paper, we propose efficient key recovery attacks against two NTRU-based SHE schemes, which have not gained much atten...

متن کامل

Adaptive Key Recovery Attacks on NTRU-Based Somewhat Homomorphic Encryption Schemes

In this paper we present adaptive key recovery attacks on NTRU-based somewhat homomorphic encryption schemes. Among such schemes, we study the proposal by Bos et al [BLLN13] in 2013. Given access to a decryption oracle, the attack allows us to compute the private key for all parameter choices. Such attacks show that one must be very careful about the use of homomorphic encryption in practice. T...

متن کامل

On CCA-Secure Somewhat Homomorphic Encryption

It is well known that any encryption scheme which supports any form of homomorphic operation cannot be secure against adaptive chosen ciphertext attacks. The question then arises as to what is the most stringent security definition which is achievable by homomorphic encryption schemes. Prior work has shown that various schemes which support a single homomorphic encryption scheme can be shown to...

متن کامل

A key recovery attack to the scale-invariant NTRU-based somewhat homomorphic encryption scheme

In this paper we present a key recovery attack to the scale-invariant NTRU-based somewhat homomorphic encryption scheme proposed by Bos et al [BLLN13] in 2013. The attack allows us to compute the private key for t > 2 and when the private key is chosen with coefficients in {−1, 0, 1}. The efficiency of the attack is optimal since it requires just one decryption oracle query, showing that if we ...

متن کامل

Cryptanalysis of a (Somewhat) Additively Homomorphic Encryption Scheme Used in PIR

Private Information Retrieval (PIR) protects users’ privacy in outsourced storage applications and can be achieved using additively homomorphic encryption schemes. Several PIR schemes with a “real world” level of practicality, both in terms of computational and communication complexity, have been recently studied and implemented. One of the possible building block is a conceptually simple and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014